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Abstract. A model based on the existence of two different competing local structures in water is
described. It is shown that it can explain the transition between fragile and strong behaviour that
supercooled water undergoes at around 220 K. The high-temperature behaviour is similar to that
observed in standard fragile glass formers. The strong behaviour at low temperatures is associated
with the existence of a remanent configurational entropy arising from the possibility of locally
choosing between the two possible environments.

1. Introduction

The form of the dependence of viscosity on temperature is among the many properties that
make water an anomalous fluid. Water is a fragile fluid when viewed at temperatures close
to the melting temperature, indicating that there is an arrest of its degrees of freedom on
cooling. This behaviour is typical of many substances known as fragile glass formers [1, 2].
However, close to the glass temperatureTG (∼136 K) supercooled water shows characteristics
of a strong liquid [3, 4], in which there is an almost temperature-independent configurational
entropy, that manifests itself in an Arrhenius dependence of the viscosityη as a function ofT .
Thermodynamic constraints limit the transition between these two regimes to occurring rather
sharply in a temperature range around∼220 K [5].

There is by now good evidence that many of the anomalous properties of water can be
rationalized by the use of an effective, two-particle, spherical interaction potential, of the core-
softened type [6–9]. This interaction can be viewed as appearing between clusters of water
molecules, rather than between single molecules [10, 11]. The main characteristic of this
interaction is that it allows for two different equilibrium distances between clusters, depending
on pressure. An appropriate, simplified model that captures many of the anomalies of water is
provided by spherical particles interacting through a potential consisting of a hard core plus a
soft repulsive shoulder [6,7]. Here we show—using an analytically solvable version of it—that
this kind of interaction can also explain the non-standard behaviour ofη(T ).

2. The hard-sphere model

We will use a model of hard spheres as a starting point (in the next section it will be generalized
to describe the properties of water). We will suppose that the pure hard-sphere system has an
ideal thermodynamical glass transition at some temperatureT0 if the fluid phase is supercooled
preventing crystallization. A possible scenario for this glass transition is the following [12–14].
For glassy systems there is a contributionsc to the entropy—referred to as configurational
entropy—that comes from the many different configurations in which the glass can exist. For
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the case of spheres it comes from the many ways in which the spheres can be accommodated
in stable, non-crystalline arrangements. These configurations differ in the value of the specific
volumev. We will suppose that hard spheres have a configurational entropy per particlesHS

c (v)

of the form†

sHS
c (v) = α(v − v0) − β(v − v0)

2. (1)

According to this formula,sHS
c becomes lower than zero forv < v0 (and forv > v0 + α/β),

indicating that there are no accessible states in this range, i.e.,v0 is the minimum value thatv
can take.

To obtain the total entropystot of the system we still have to include the contribution
coming from small vibrations around each configuration [14]. Notice thatv in (1) is the
limiting volume of a given glass, whereas the actual volume of the systemV is larger, since
it includes the vibrational expansion. We will suppose that the vibrational contribution to the
entropysvib depends only on the difference between the actual volume of the systemV and
the limiting volume of the corresponding glassv. The total entropy for each value ofV is then
obtained by choosing the appropriate value ofv that maximizesstot, namely

stot(V ) = max
v

(sc(v) + svib(V − v)). (2)

The maximum condition can be written in differential form as
∂sc(v)

∂v
+

∂svib(V − v)

∂v
= 0. (3)

On the other hand, from thermodynamic relations we get

P

T
= dstot

dV
= ∂svib(V − v)

∂V
+

(
∂sc(v)

∂v
+

∂svib(V − v)

∂v

)
dv

dV
(4)

in which, on the right-hand side,v is thought of as a function ofV obtained by solving (3).
But the second term of (4) is zero because of (3), so from here (using again (3) and the fact
that∂svib/∂v = −∂svib/∂V due to the dependence onV − v only) we get

P

T
= ∂sc(v)

∂v
. (5)

This expression coincides with the one that is obtained if the vibrational contribution to the
entropy is completely dismissed, but as we see its validity is wider.

Expression (1) for the configurational entropy implies the existence of an ideal
thermodynamical glass transition occurring atT0, where T0 is obtained fromP/T0 =
∂sHS

c /∂v
∣∣
v=v0

= α. Whereas on microscopic grounds there is no rigorous proof that this
transition should occur, the consequences for magnitudes of observables that can be predicted
from it are consistent with the known phenomenology of glassy systems [15] and with results
of numerical simulations [14,16]. ForT < T0 the system is in the fundamental configurational
state, and thensHS

c (T < T0) = 0. ForT > T0, sHS
c is given by (using (5) and (1))

sHS
c (T > T0) = α2

4βT 2
(T 2 − P 2/α2) = α2

4βT 2
(T 2 − T 2

0 ). (6)

This expression forsHS
c can be used to calculate transport properties such as the viscosityη

through the use of the Adam–Gibbs formula [17]. This formula states that the value ofη is
given by

η(T ) = η0 exp[A/(T sc)] (7)

† In reference [14] a parabolic form forsc as a function ofdensity(rather thanv) is used. The difference between the
two choices is tiny, and both give rise to an ideal glass transition.
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whereη0 andA are constants. The presence ofsc in (7) reflects the fact that jumps between
different basins of the energy landscape become less probable as the number of these basins
diminishes. The Adam–Gibbs formula can be made plausible [17] but it is not rigorous, and
should be considered only as an appropriate working hypothesis.

For hard spheres, equation (7) becomes

ηHS(T ) = η0 exp
[
4Aα−2βT/(T 2 − T 2

0 )
]
. (8)

This is a behaviour typical of many glass formers, in whichη increases more rapidly than in a
simple thermally activated process, and it diverges whenT → T0.

3. Core-softened models for water

Properties of water have been studied recently by using models in which particles interact
through potentials that allow for two different equilibrium distances between particles, namely
d0 andd1 > d0 [6–8, 18]. One possibility is, for instance, to take a strict hard core atd0 and
a shoulder that vanishes atd1 [6, 7]. Here we will use a further simplification of this kind of
model in order to be able to extract analytical results [7]. We consider spheres of radiusr1

(=d1/2). Pairs of spheres will be allowed to overlap (more than two overlapping spheres will
not be allowed), and each time this happens the system will be charged an energyε0. This may
be considered as a limiting case for particles with a core-softened potential, in which there
is a low-energy hard core at a distance 2r1, and a strict hard core at 2r0, and we are taking
r0 = 0. To make the problem analytically tractable, we will also suppose that each time two
spheres overlap, they are constrained to have their centres in exactly the same position. This
approximation neglects the entropy associated with small vibrations of the particles in each
pair.

We are interested in the configurational entropysc of the system, now as a function of the
specific enthalpyh = Pv + e, that includes the internal energye coming from the existence
of overlapping particles. To calculatesc(h) we proceed in the following way. Suppose we
have a system ofN particles,n of them in non-overlapped positions andn′ pairs of overlapped
particles (N = n + 2n′). The configurational entropy will be that ofn + n′ hard spheres plus
the combinatorial entropy for locating then′ pairs in then + n′ possible positions, i.e.,

s̃c = n + n′

N
sHS
c + kB ln

(
n + n′

n′

)
(9)

(here we usẽsc to indicate an entropy functional). Usingx ≡ n′/N and ṽ ≡ V/(n + n′) =
v/(1 − x) as independent variables we can writes̃c as

s̃c(x, ṽ) = (1 − x)sHS
c (ṽ) + kB

[
(1 − 2x) ln

(
1 − x

1 − 2x

)
+ x ln

(
1 − x

x

)]
. (10)

As in the case of pure hard spheres, in which we supposed that the vibrational contribution to
the entropy was a function ofV − v only, we will suppose that the vibrational contribution
in the present case of soft spheres is a function ofH − h only, whereH is the actual value
of the enthalpy of the system, andh is the enthalpy of the corresponding glass. Under these
assumptions the configurational entropy as a function ofh is obtained from

sc(h) = max
x,ṽ

∣∣∣
h
s̃c(x, ṽ) (11)

h = Pv + e = (1 − x)P ṽ + xε0 (12)

where the maximum is taken keepingh constant. Also, along the lines of the previous section,
we can rewrite the thermodynamic relationT −1 = ∂stot/∂H asT −1 = ∂sc(h)/∂h.
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4. Results

In figure 1 we seesc, x, andv as functions ofh for three different values ofP , obtained using
expression (6) forsHS(v) with α = 2.79 kBr−3

1 , β = 0.97 kBr−6
1 , andv0 = 6.37 r3

1 which
are values extracted from numerical simulations of hard-sphere systems [14]. We also plot in
figure 1 the limiting cases̃sc(x = 0) ands̃c(x = 0.5), corresponding to all particles in single
or overlapped positions, respectively. The thermodynamic valuesc(h) can never be lower
than s̃c(x = 0) or s̃c(x = 0.5). The states with the lowest enthalpy forx = 0 andx = 0.5
have (from (12))h = Pv0 andh = Pv0/2 + ε0/2, respectively. These values coincide at
Pcr ≡ ε0/v0. In figure 1(a), forP = 0.9 Pcr, s̃c(x = 0) is always greater thañsc(x = 0.5) and
for this reasonx takes values close to 0, indicating that most particles are in single positions.
Thesc(h) function obtained departs from zero with an infinite derivative ath = 0.9ε0 (because
of the combinatorial contribution to the entropy) but it still has a singularity (namely a jump in
its second derivative) when∂sc/∂h = α/P . In (b) the value ofP = 1.1Pcr is larger, and at low
h the contributions withx = 0.5 dominate, indicating that the system has almost all particles
coupled in pairs. For higherh, x goes down to zero—that is, paired particles become rare. In
(c), the value ofP = Pcr is exactly that at which the ground state of the system withx = 0
and the one withx = 0.5 become degenerate. In this case, entropy starts from a finite value
'0.48 kB at hmin = ε0, corresponding to the maximum combinatorial entropy of choosing
which particles are single, and which are paired.

To get the values of the thermodynamic variables as a function ofT , instead ofh, we have
to make use of the relationT −1 = ∂sc/∂h. The results for the configurational entropysc(T )

and the viscosityη(T ) (calculated using the Adam–Gibbs formula (7)) are shown in figure 2.

5. Discussion and comparison with water

From figure 2(a) we see that for anyP , sc is finite for allT 6= 0, i.e., there is no vanishing of
sc at any finite temperature, contrary to what happened in the case of simple hard spheres (see
equation (6)). This is due to the possibility for the system having particles single or paired,
which always accounts for the existence of a non-zero combinatorial entropy. ForP = Pcr

the bottoms of thẽsc-functions corresponding tox = 0 andx = 0.5 coincide (figure 1(c)),
and this combinatorial entropy can be used up toT = 0, in such a way thatsc remains finite,
even whenT → 0. ForP 6= Pcr, sc goes to zero asT → 0, as the ground state is unique.
There is still a phase transition at finite temperatures, signalled by the kink in thesc(T ) curves
in figure 2(a). The position of this kink in theP–T plane is given byP/T = α. In the
log(η)–1/T plot (figure 2(b)), the kinks mark the transition between a fragile and a strong
behaviour. At highT , sc diminishes rapidly with temperature and the system is fragile. This
behaviour is equivalent to that of the simple hard-sphere system (see equation (8)). At lowT ,
the dependence ofsc on T is much weaker, indicating a stronger behaviour. In this regime,
the available configurational entropy is mainly of combinatorial nature.

For this model there is no ideal glass transition, i.e.,η is finite at any finite temperature,
andT0 = 0. However, from an experimental point of view, the glass transition temperatureTG

is conventionally defined as the value ofT at whichη takes some large value (this is usually
taken to be 1013 P). In figure 3 we show curves of constantη extracted from our model. Each of
these may be thought of as defining a dynamical glass transition temperatureTG (that depends
on pressure), according to different dynamical criteria. The position of the line of the fragile-
to-strong transition is also indicated. We see thatTG is systematically lower around the critical
pressureP = Pcr. This behaviour has been observed in numerical simulations of SiO2 [19,20],
which has a fragile-to-strong transition qualitatively similar to that of water. Notice that the
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Figure 1. Configurational entropysc, specific volumev, and fraction of pairs of particles relative to
the total number of particlesx as functions of the enthalpy for three different values of pressure. In
order to allow comparison, the limiting casess̃c(x = 0) ands̃c(x = 0.5) are also shown (entropies
are given in units ofkB , v is in units of 5r3

1, wherer1 is the radius of the particles; see the text for
details).
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Figure 2. (a) Configurational entropysc as a function ofT , for different values ofP/Pcr,
as indicated. (b) Viscosityη versus 1/T , calculated according to the Adam–Gibbs formula
(expression (7);η0 andA are the constants in that expression).
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Figure 3. A pressure–temperature plot, indicating the position of the fragile-to-strong transition
(solid line) and contour lines of constant viscosity (dashed lines; the corresponding values of
ε0A

−1 ln(η/η0) are indicated).
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form of the curves of constantη implies the existence of minima of the viscosity as a function
of pressure, at constant temperature. This is a well known fact for simulated water [21].

One important ingredient that we have not included in the model is the existence of an
attractive part in the interaction potential. In real water this attraction generates the liquid–
vapour first-order coexistence line, and also probably a second first-order line in the supercooled
region separating two different amorphous configurations [7]. A simple way of analysing the
consequences for our model of an attraction between particles is the following. If the attraction
is considered to be long ranged, of van der Waals type, then all of the results that we have
obtained remain valid if we replaceP by a new effective pressureP ∗ ≡ P + γ /v2 for some
constantγ ; that is, the attraction acts as an effective pressure (which depends onv) that has to be
added to the external pressureP . In theP–T phase diagram, this non-uniform transformation
of theP -axis produces (ifv decreases rapidly whenP increases) a ‘folding’ that indicates a
first-order transition [7]. This is the way in which the liquid–vapour coexistence line appears
in the van der Waals equation for a fluid. For our model, sincev(P ) at T = 0 has an abrupt
discontinuity atP = Pcr, the attraction generates also a new first-order line ending at a critical
point. It seems to be [10] that for water this critical point lies at temperatures higher than
TG, so the first-order line determines two different sectors of the glassy phase of water. These
two sectors correspond to the experimentally observed high-density amorphous (above the
first-order line) and low-density amorphous (below the first-order line) phases [10,22]. In our
model, these two phases differ in the fraction of particles that are paired, and thus they can
also be named high-density and low-density amorphous phases.

We have relied in our discussion upon the existence of a thermodynamic phase transition
for hard spheres, that is not rigorously proven to occur. However, for slightly different forms
for sHS

c (which may imply the absence of an ideal glass transition) to that given by equation (6),
our results still remain valid, except for the fact that the sharp fragile-to-strong transition (the
kinks in the curves of figure 2) becomes a crossover.

The model that we have presented explains the transition between fragile and strong
behaviour of water as arising from the competition between two different local structures. To
be able to solve the problem analytically, we had to make the crude approximation that these
structures correspond to single and paired particles. In real water it is likely that what plays the
role of our particles are the so-called Walrafen pentamers [23], which are clusters of five water
molecules. These clusters are naturally expected to be accommodated at one of two possible
distances from each other [10]. It is clear that in this more general case the mechanism for
a fragile-to-strong transition may remain basically the same. In fact, from the way that we
solved the model, it is seen that all that is needed is the existence of two different competing
structures, regardless of their details. At highT the fragile behaviour is associated with the
configurational entropy of each structure individually. At lowT the strong behaviour appears
due to the combinatorial entropy of choosing locally between the two structures.
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